
SOLUTIONS TO EXERCISES 6.3.11, 6.4.11, AND 6.5.3 FROM PROBLEM SET 7

JASON FERGUSON

1. Ex. 6.3.11: Find the closest point to x in the subspace W spanned by v1 and v2.

x =


3
1
5
1

 v1 =


3
1
−1
1

 v2 =


1
−1
1
−1


Solution. Because v1 ·v2 = 3− 1− 1− 1 = 0, {v1,v2} is an orthogonal set. Beause neither v1 nor v2 is 0, this means
that {v1,v2} is linearly independent. Since W is spanned by {v1,v2}, we have that {v1,v2} is an orthogonal basis
for W .

Therefore, the answer is ProjW x, and we can calculate it as:

x · v1

v1 · v1
v1 +

x · v2

v1 · v2
v2 =

9 + 1− 5 + 1

9 + 1 + 1 + 1
v1 +

3− 1 + 5− 1

1 + 1 + 1 + 1
v2 =

1

2
v1 +

3

2
v2 =


3
2
1
2
− 1

2
1
2

+


3
2
− 3

2
3
2
− 3

2

 =


3
−1
1
−1

 .

�

2. Ex. 6.4.11: Find an orthogonal basis for the column space of the following matrix:
1 2 5
−1 1 −4
−1 4 −3
1 −4 7
1 2 1

 .

Solution. Let A be the matrix in the problem, let x1, x2, and x3 be its three columns, and let V be ColA. Then we
want to find an orthogonal basis for V .

In order to use Gram-Schmidt as it’s written in the book, we need a basis for V . By definition, {x1,x2,x3} is a
spanning set for V , but we need to know that {x1,x2,x3} is linearly independent before we know it’s a basis. To check
that {x1,x2,x3} is linearly independent, we row-reduce A:

A =


1 2 5
−1 1 −4
−1 4 −3
1 −4 7
1 2 1

 Add Row 1 to Rows 2 and 3−−−−−−−−−−−−−−−−−−−−−−→
Add (−1)(Row 1) to Rows 4 and 5


1 2 5
0 3 1
0 6 2
0 −6 2
0 0 4

 Add (−2)(Row 2) to Row 3−−−−−−−−−−−−−−−−−→
Add 2(Row 2) to Row 4


1 2 5
0 3 1
0 0 0
0 0 4
0 0 −4

 .

This means A has a pivot in every column, so the columns of A are linearly independent. In other words, {x1,x2,x3}
is linearly independent.

Now we can use Gram-Schmidt on {x1,x2,x3}. Let:

v1 = x1 = (1,−1,−1, 1, 1).

v2 = x2 −
x2 · v1

v1 · v1
v1 = x2 −

2− 1− 4− 4 + 2

1 + 1 + 1 + 1 + 1
v1 = x2 + v1 = (3, 0, 3,−3, 3).

v2 = x3 −
x3 · v1

v1 · v1
v1 −

x3 · v2

v2 · v2
v2 = x3 −

5 + 4 + 3 + 7 + 1

1 + 1 + 1 + 1 + 1
v1 −

15 + 0− 9− 21 + 3

9 + 0 + 9 + 9 + 9
v2 = x3 − 4v1 +

1

3
v2

= (5,−4,−3, 7, 1) + (−4, 4, 4,−4,−4) + (1, 0, 1,−1, 1) = (2, 0, 2, 2,−2).

Then:

{v1,v2,v3} =




1
−1
−1
1
1

 ,


3
0
3
−3
3

 ,


2
0
2
2
−2


 .

1



is an orthogonal basis of the column space of the matrix.
There are many other bases for the column space, including

{
v1,

1
3v2,

1
2v3

}
.

Also, although Lay’s text doesn’t say this, it is possible to use Gram-Schmidt on a list of vectors {x1, . . . ,xn} that
may not be linearly independent to find an orthogonal basis for Span{x1, . . . ,xn}. The only difference is that some of
the vectors v1, . . . ,vn might be 0. However, if vi = 0, then if you drop the −xj ·vi

vi·vi
vi term when you calculate vj for

each j > i, then the nonzero vectors in {v1, . . . ,vn} will be an orthogonal basis for Span{x1, . . . ,xn}. �

3. Ex. 6.5.3: Find a least-squares solution of Ax = b by (a) constructing the normal equations for x̂ and (b) solving
for x̂.

A =


1 −2
−1 2
0 3
2 5

 b =


3
1
−4
2

 .

Solution. (b) Compute:

ATA =

[
1 −1 0 2
−2 2 3 5

]
1 −2
−1 2
0 3
2 5

 =

[
1 + 1 + 0 + 4 −2− 2 + 0 + 10
−2− 2 + 0 + 10 4 + 4 + 9 + 25

]
=

[
6 6
6 42

]

ATb =

[
1 −1 0 2
−2 2 3 5

]
3
1
−4
2

 =

[
3− 1 + 0 + 4
−6 + 2− 12 + 10

]
=

[
6
−6

]
.

The normal equations for x̂ is ATAx̂ = ATb, so the normal equation is

[
6 6
6 42

]
x̂ =

[
6
−6

]
.

(b) Solve the normal equation:[
6 6 6
6 42 −6

]
Add (−1)(Row 1)−−−−−−−−−−−→

to Row 2

[
6 6 6
0 36 −12

]
Multiply−−−−−−−−→

Row 2 by 1
36

[
6 6 6
0 1 − 1

3

]
Add (−6)(Row 2)−−−−−−−−−−−→

to Row 1

[
6 0 8
0 1 − 1

3

]
Multiply−−−−−−−→

Row 1 by 1
6

[
1 0 4

3
0 1 − 1

3

]

The only solution to the normal equation, which is also the only least-squares solution to Ax = b, is x̂ =

[
4
3
− 1

3

]
. �
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